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Abstract

The prdblem of designing a model follower
control system and of deciding when the plant
can follow the model without error is consid-
ered. Specifically, a testing procedure is
given which determines when the output of a
linear plant can be made to follow a model by
Placing feedback around the plant. It is
assumed that model and plant are described by a
known set of state equations. The tests are
developed for two configurations of model fol-
lowing. In the first of these, known as
implicit model following or matching dynamics,
the model does not actually become a part of
the total system but enters only into the selec-
tion of the feedback law, whereas in the second
or real model following configuration, simula-
tion of the model is required. It is shown
that in the absence of disturbances the condi-
tions for perfect following are essentially the
same for both configurations. For the case of
implicit model following, the control law which
achieves perfect following is also calculated
and, in general, will require both finite and
singular controls of the delta function type if
the model state space is of smaller dimension
than the plant state space. The results
obtained suggest a rational guide for deciding
what type of model following is most appropri-
ate for a given problem. That is, real model
following, at the expense of greater complexity,
offers the best performance if random distur-
bances occur within the plant but achieves no
better performance than the simpler implicit
model following in the absence of disturbances
or uncertainties. Two examples, one of which
is based on the lateral equation of motion of
an aircraft, are given to illustrate the theory.
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Introduection

The design of a model follower control sys-
tem consists of choosing a feedback law so that
the output variables of the plant will faith-
fully follow the output variables of a model.
For instance, the plant could be represented by
the linearized equations of motion of an air-
craft and the model by the equations correspond-
ing to an aircraft with ideal response charac-
teristics as determined perhaps from simulator
studies.
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Recently Ellert and Merriam [1] and Tyler
[2] used quadratic optimal control theory to
synthesize model following control systems.
Their technique, unlike those based on classi-
cal procedures, is applicable to arbitrary
multivariable systems and always yilelds a feed-
back configuration which minimizes a quadratic
function of the error between the plant ocutput
and the model.

Although quadratic optimal control yields
a general procedure for synthesizing model fol-
lowing control systems, experience has brought
to light some additional design problems which
can be handled more effectively by other meth-
ods. An example of such a problem is that of
deciding when the closed-loop plant can follow
the model perfectly. That is, for a particular
combination of plant and model, one may find
that the closed-loop plant designed by the meth-
ods of optimal control follows the model with
unacceptably large errors which cannot be
reduced below some limiting value merely by
manipulating the weight matrices in the cost
function. In other words, there may not be
enough freedom of choice in the feedback matrix
to match the plant to the model if the model
dynamics differ greatly from the open-loop
plant dynamics. In that case, the feedback
matrix calculated via optimal control still
yields a least squares match between model and
plant response during the control period but
gives no prior indication of matching accuracy
which must be determined separately either by
actually checking the response of the closed
loop system or by evaluating the minimum cost.
A simple test of whether a plant and model can
be matched when no restrictions are placed on
the magnitude of the control signals would
therefore be a useful aid in designing a model
following control system.

A further difficulty occurs when faced
with the choice between a design based on a
"model in the system" and the so-called "model
in the performance index" or implicit model.

The relationship between these two design
approaches is not entirely clarified in the 1it-
ePature, although Tyler [2] has shed some light
on this question.



*  The main subject of this paper is to
develop simple algebraic tests, applicable to
both types of model following designs, for
checking whether a plant can be matched per-
fectly to a model. The tests are of such a
nature that they also reveal the necessity of
an unbounded control law if required for per-
fect matching. For implicit model following,
if the control law which achieves matching is
known to exist, it will also be derived.

Implicit Model Following

In implicit model following one attempts
to modify the output dynamics of the plant by
means of feedback so as to approximate the
dynamics of a given model. Mathematically,
implicit model following is defined in the fol-
lowing way. Let the multivariable plant be
described by the equations

Fx + Bu (1)

(2)

where x 1is an n-dimensional state vector, u
is an m-dimensional control vector, and y is
an l-dimensional output vector. The matrices
F, B, and H do not depend on time and have
dimensions nXn, nXm, and ¥Xn, respectively.
Also, it is assumed that n 2m and n = 1.
the model is described by the equation

b'q

y = Hx

Ir

L =

(3)

where z denotes the l-dimensional state vec-
tor of the model, then we ask that the output

y(t) satisfy
dx{t!
dt

z = Lz 1 X 1 constant matrix

(k)

= Ly(t)

as closely as possible. One method of achieving
this objective is to use optimal control theory
to minimize the following quadratic loss func-

tion [3]:

-
o

where @Q 1s a positive semidefinite matrix and
R is a positive definite matrix. This formu-
lation of model following does not introduce
the state variables of the model directly,
since y and y appearing in the loss function
can be expressed as a function of x and u.
Hence, the names "implicit model," "model in
the performance index" [2], and "matching
dynamics” [4] all have been used to describe
this method. Although optimal control theory
generates a feedback matrix for arbitrary L,
the error (y - Ly) obtained from the

[(7 - 1y)'a(y - Ly) + u'Ruldt

closed-loop system may be large even if the
norm of R 1is chosen very small. Furthermore,
one can show that assumptions such as control-
lability of the plant or observability of the
output also are neither necessary nor sufficient
to guarantee that the error will be small.

We now address ourselves to the guestion,
"Under what conditions is it possible to sat-
isfy equation (4) exactly?" Using equations (1)
and (2) and requiring that equation (4) is a
strict equality permits us to write

HBu = (IH - HF)x

If this equation is to hold for all x by
proper choice of u, then the range of HB
must contain the range of (IH- HF) written as

(6)

First, equation (5) is formally solved for u
by taking the pseudoinverse of HB [5]

R(HB) D R(LH - HF)

u = (m) (11 - wF)x (7)
Then, when u is eliminated from equations (5)
and (7), the condition for zero error becomes

((HB)(HB)T - INLHE - HF)x =0 allx (8)
To justify the use of the pseudoinverse, one
must show that if equation (8) is true for all
x (i.e., ((EB)(#EB)T - I)(IH - HF) is the zero
transformation), then relation (6) is a neces-
sary consequence. A property of the pseudoin-
verse which permits this conclusion is that
(rB)(#B)t 1is an orthogonal projection operator
on R(HB). Let 2z be any vector in R(LH - HF)
and write =z as the sunm

z2 =20+ 2,
where

zo € R(HB)  and 3z, e [R(mB)]*

Since ((HB)(HB)T - 1) is also an orthogonal pro-
jection which projects every z € R(1IH - HF) on
[R(EB)]~ and since by assumption equation (8)
is zero for every X, it follows that

Z = Zo
and therefore R(ILH - HF)cC R(HB). Thus, we
conclude that choosing
u = (1) (1 - mF)x (9)

when

((m) ()" - 1)(11 - 'wF) = 0 (10)



-guarantees that ¥ = Ly, or, equivalently, that
the output dynamics of the closed-loop system
will match the desired output dynamics. Fur-
thermore, the boundedness of the pseudoinverse
implies that the feedback law (HB)T(LH - HF) is
bounded. Therefore, if the condition for zero
error (eq. (10)) is satisfied and the model is
stable, the controls that achieve a perfect
match are always bounded.

When equation (10) is not satisfied, it
may still be possible to achieve zero error by
~enlarging the class of controls to include
delta functions. As the next step the control
law and the test for perfect following derived
above are extended to the case of unbounded
*controls. One begins by writing every control
as a sum of ordinary and delta functioms:

u(t,7) = uy(t) + ug(7)8(t - 7) (11)

ure [n(EB)1*
ua.e m(HB)

where M denotes null space, L denotes the
perpendicular complement, T is a running vari-
able, and t is current time assumed to be
fixed. Thus the delta function occurs at time
t. It is necessary to restrict ug to the
null space of HB since otherwise the left
side of equation (5) would contain a delta
function of strength HBuy while the right
side does not. Hence, perfect matching would
be absent at the moment the impulse occurs.
From this remark it also follows that delta
function controls are only helpful if the rank
of HB 1is less than maximal. Adding the pro-
posed delta function control at time +t+ can
then be shown to modify the derivative of the
output, y(t¥), as follows
y(t*) = HFx + HBuy + HFBug (12)
Since the right side of equation (12) must be
equal to Ly 1if zero error is to be achieved,
one obtains
HBu; + HFBug = (1H - HF)x (13)
By defining # = u; + ug and using the pseudo-
inverse to construct the necessary projectioms,
one can write
w o= @, = (1-(m)] L
1

Then, upon substituting equations (1L4) into
equation (13), it is possible to solve explic-
itly for 9:

= Mi(LH - HF)x (15)

where
M= HB + HFB(1 - (HB)THB)

Finally, the condition for zero error can now
be derived by replacing ui and ug 1in equa-
tion (13) with the relationship for these
quantities obtained from equations (14%) and
(15):

(i’ - I)(1H - =) = 0 (16)
If condition (16) is satisfied, then equa-
tion (15) essentially gives the control law
which achieves zero error, except for the
implementation of the delta function control
of that component of U which lies along
N(HB). Assuming for the moment that it is pos-
sible to generate the required delta function,
we want to demonstrate that from t+t onward,
equality of equation (4) can be maintained. In
general, equation (4) or (5) will not hold at
time t since the effect of the delta func-
tion is not felt until time +t+. At that
moment a step change occurs in y in such a
way that equation (4) is satisfied. Perfect
matching is, therefore, assured for at least a
time interval that is short in comparison to
the fastest time constant of the system. As
soon as the difference between ¥ and Ly
exceeds some small threshold, where the value
of the threshold may be chosen arbitrarily
small, another delta function whose weight is
chosen according to equations (14) and (15) is
applied. The second delta function restores
the equality of equation (4). Clearly, perfect
matching can thus be maintained indefinitely by
continuing to apply a delta function whenever
the threshold value is exceeded. We also note
that the smaller the threshold value is chosen,
the closer will be the spacing of the delta
functions, but also the smaller will be their
strength.

The problem of implementing a closed-loop
control law which generates the required delta
functions is discussed in the appendix. It is
shown there that an approximate synthesis of
such a control law is obtained by multiplying
ug Dby a large positive gain constant X and
that the approximation to the ideal delta
function control law improves in proportion to
the magnitude of K.

If equation (16) is not satisfied and the
rank of M is not yet maximal, it may still be
possible to achieve zero error by including
various derivatives of delta functions in addi-
tion to the previously used controls. Consider,
for example, the addition of first derivatives
of delta functions. The control u is then
written as the direct sum of three controls:
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u=up +ougd(t - 7) +undt(e - 1) (17)

ure [n(uB) "
uge m(ms) [\ [n(mFe) 1t
Uy 1€ T (HB) ﬂ N(HFB)

This decomposition assures that delta functions
and theilr derivatives do nct appear in the
expression for y which, for the choice of
controls given by equation (17) becomes

y = HFx + HBuy + HFBug + HFQBuBl

At this point, the right side of the above equa-
tion is equated to LHx and the condition
describing when the resulting equation has a
solution u for all x 1is found. As before,

a numerical test for perfect matching similar
to equation (16) can be developed by defining
U= up +ug + 1 and then writing the compo-
nents of U as orthogonal projections of u

on the appropriate subspaces:
ug = Pau ,

U.l = Plu. ) = Palu

Usa
For general vector controls which contain
finite, delta function, and derivative of delta
function components it does not appear to be
possible to construct the projections explic-
itly in terms of pseudoinverses, although numer-
ical procedures for performing such construc-
tions are well known. The condition for
perfect matching and the corresponding control
law for this case is still given by equa-

tions (16) and (15), respectively, but M must
now be replaced by

if = HB + HFBPy + HF°BPy, (18)

Real Model Following

In implicit model following design the
model entered only in the selection of the
feedback matrix, and no real time error mea-
surement between model output and plant output
was necessary. In real model following the
model, although itself uncontrollable, becomes
part of the system in that the model states are
compared with the output of the plant. The
comparison actually takes place in the perfor-
mance measure as follows:

o0
sz
o

If optimal control theory is to be used to com-
pute the feedback and feedforward gain matrices,
one augments the state space of the plant with
the model states and then minimizes

[(y - 2)'aly - 2z) + u'rulat (29)

I =J[ (w'Qw + u'Ru)at (20)
o

. F o] R [H'Q,H -H'Q]
. . X
W= -7 = W Q =

Z 0] L -QH Q

It has been shown that the feedback matrix com-
puted by this method depends only on the T, Q,
and R and not on the model parameters 1L,
whereas the feedforward matrix depends on both
model and plant parameters [2].

The derivation of conditiong for perfect
following in this case uses the fact that if
all orders of time derivatives of the error are
zero at any time t, then the error will be
zero for all time. Beginning with the zeroth
derivative one obtains the obvious fact that

z(t) = Hx(t) (21)
If the first derivative of the error is to be

zero, one finds after using equations (1), (2),
(3), and (21) that

H(Fx + Bu + BAz) = H(Fx + Bu + BAHx) = LHx
(22)

Here A is assumed to be an arbitrary feedfor-
ward matrix. Upon solving the last two members
of equation (22) for u, one obtains

u = (HB)T(LH - HF - HBAH)x (23)
This control law achieves zero error in the
first derivative if

-r

((uB)(EB) - I)(1H - HF) = O (2k)
which i1s obtained by substituting u of equa-
tion (23) into equation (22). But equa-
tion (24), if true, holds for arbitrary +;
therefore, all higher order derivatives of the
error will also be zero. Thus, the condition
for perfect following for this case is the same
as for implieit model following; moreover,
direct use of the model states =z(t) through

the feedforward loop has no effect on this
condition.

If condition (24) is not satisfied, then
one can consider sums of ordinary and delta
function controels as a means of achieving zero
error, Jjust as for the case of implicit model
following. Clearly, the arguments presented
there carry over to this case.



Evaluation of Real and Implicit
Model Following

It has been shown that the conditions for
perfect following and the control law that
achieves perfect following are identical for
both real and implicit model following. Thus,
assuming that perfect following is possible
with either bounded or unbounded controls and
that unknown disturbances are absent, there is
no essential advantage of one design over the
other. The key issue in deciding between a
real model following design (with its addi-
tional hardware requirements) and the simpler
implicit model following is whether or not the
requirements of the problem dictate that a par-
ticular phase trajectory of the model be fol-
lowed in the presence of unknown disturbances
in the plant. Implicit model following is not
capable of following a phase traJjectory of the
model where disturbances are present since no
real time error measurement between model and
plant states takes place; the model following
is open loop as it were. But, if the model
serves merely to characterize the desired
dynamic properties of the plant, in other words
model and plant should have similar responses
when starting at the same initial states with
no disturbances present, the implicit model
following would be sufficient.

The maintenance of alinement between plant
and model in the presence of uncertainties, be
they unknown parameters or random disturbances
necessitates the use of a real model in the
system. With a model in the system, errors
arising between model and plant states due to
uncertainties can be measured and corrected
continuocusly. Thus, the principal advantage of
having a model in the system is not that it
always achieves better following, but that it
desensitizes the following to unknown
disturbances.

In the case of real model following, the
control law given by equation (23) cannot be
used by itself since it does not include the
states of the model. That is, this control law
fails to take advantage of the possibility,
unique to real model following, of realining
the plant and the model states if disturbances
cause them to drift apart. Here the techniques
of optimal control would seem most appropriate
for computing the control law.

Examples

In this section two examples are presented.
The first, which is discussed in some detail,
represents the linearized lateral equations of
motion of an aircraft. Three model following

designs, one calculated by the theory developed
in this paper, and the other two by the methods
of quadratic optimal control, are compared in
this example, and the advantages of each are
pointed out. The second example illustrates

the theory when an unbounded control law is
required for perfect matching. All computations
were performed with the automatic synthesis
program of Kalman and Englar [4].

Example 1

The numerical values for the model and
plant parameters used here correspond with one
of Tyler's examples [2].

0 1 0 o |
0 -2.93 =h.75 ~0.78
F:.
0.086 0 -0.11 -1.0
0 -0.0k2 2.59 -0.39
0 -3.91
B:
0.035 0
-2.53 0.31
H=1I
[0 1 0 o |
0 -1 -73.14 3.18
I, =
0.086 0 -0.11 -1.0
L9.0086 0.086 8.95 -o.&g

(bank angle)

"

¢

®| (bank rate)
State vector
B

(sideslip angle)

r| (yaw rate)

3,.| (rudder deflection)

Control wvector
(aileron deflection)

The test of perfect following, equation (8),
applied to this example gives the following
result:



(m)m)' - 1)1z - 7F)

0 0 0 0 N
-1.3x1077  -L.3x107®  -1.1x107°  -3.4x107
-1.2x107%  -3.9x107%®  -1.3x1072  -3,0x107°
-1.6x1078  -5.4x107°  -1.8x107*  -4.0x107°

(25)

Thus perfect following is not possible because
the right side of the above equation is not the
=zero transformation. Since HB has maximum
rank, it also follows from earlier work that
delta function controls cannot improve this
situation. Nevertheless, because most entries
in the matrix of equation (25) are small in
comparison with entries in the system and model
matrices, it is interesting to compare the
performance of the simple model following con-
trol law of equation (7); that is,

w = (m) (x5 - mF)x =

-3.4x10™®  -0.11 -0.37 -0.08k4
X

0 -0.49 17.5 -1.01
(26)

with those calculated by optimal control for
both the implicit and real model following per-
formance indices. The Q, R feedback and
feedforward matrices used in the calculation
for the implicit and real model following
designs are glven below:

Implicit Model Following

Diag Q = [0,6,0,6] , Diag R = [1,1]
Feedback matrix =

0.0034

0.111 0.0356

0.61k

0.371

0 0.4k -17.5

Real Model Following

Diag @ = [10,10,10,10] , Diag R = [1,1]

Feedback matrix =

-0.07%  -0.094 2,34  -3.23

-3.15 -2.73 0.835 0.261

Feedforward matrix =

0.031 -0.246 2.109 -Lk.62

-3.02 -3.16 16.6 -2.3
Figures 1 and 2 compare the transient
responses of the three different control laws
for two initial conditions corresponding to an
initial bank angle and an initial bank rate,
but with the model and plant states alined at
the start. Because the response of the
impliecit model following law calculated with
optimal control was generally not much differ-
ent from the response obtained by using the
control law equation (26), it is not drawn in
all the figures in order to reduce crowding of
the curves. Also, those state variable time
histories that were omitted were found to be as
well matched as ¢ in figure 1(a). It can be
seen in figures 1 and 2 that at least during
the first 5 seconds, the performance of the
control law given by equation (26) compares
favorably with both real and implicit model
following designed via optimal control. When
model and plant are not too dissimilar, as
shown in this case by the results of the per-
fect following test, one can expect this con-
trol law to work quite well; but for greatly
mismatched model and plant, again as determined
by the perfect following test, no assurance of
satisfactory operation can be given.

Figures 3(a) and 3(b) demonstrate when it
is advantageous to use real model following.
Here a disturbance in the plant is assumed to
have caused a sudden misalinement between the
model and plant bank angle variables. Under
this condition, the real time error measurement
between model and plant, which is only possible
with real model following, facilitates the
eventual realinement of corresponding state
variables. Thus, the model serves as a memory
of a particular trajectory in the presence of
disturbances.

Example 2

The open loop plant equations of this
example are again fourth order but the model
equations are now of second order.



0 1.0 0 o | xi
0 -2.93 -4.75 0 X2
X:
0.086 0 -0.11 -1.0 Xa
0 -0.042 2.59  -0.39|  xg
(0 0]
1 01
- + u o,
0 0
. o 1
0O 1 0O © 0 1
y = X , zZ = Z
0O 0 1 o° -2 -2

It can be shown that the test for perfect fol-
lowing with finite controls, equation (10),
applied to this example fails; therefore, it is
necessary to use the more general test given by
equation (16), which considers sums of finite
and delta function controls. This latter test
shows that perfect following is indeed possible
with a control law containing both finite and
delta function controls.

After the required calculations are per-
formed, the two parts of the control law are
found to be

0 1.5 2.85 O
uy = X
0 1.5 2.85 ¢
-0.086 -2.0 -1.89 2
uy = X
0.086 2.0 1.89 -1

As shown in the appendix, an approximate
synthesis of a control law containing delta
functions is obtained by multiplying wug by a
large positive constant K. The total control
is then given by the sum of the two components,
with K appearing as a parameter in the
feedback matrix.

-0.086K 1.465-2K 2.875-1.89K K
u = X
0.086K  1.465+2K  2.875+1.89K -K

Figures 4(a) and 4(b) demonstrate the con-
vergence properties of the control law as a
function of the gain constant K.

Conclusion

Two basic approaches, each having its par-
ticular advantages and disadvantages, exist for
designing a model follower control system. In
the implicit model following method the model
enters only into the selection of the feedback
law placed around the plant but does not become
Physically part of the total system. Thus,
feedback is used chiefly to modify the dynamics
of the plant so that its output behavior coin-
cides with that of the model. This type of
following therefore operates open loop with
respect to the model since during the control
interval no real-time comparison of model
states and plant output takes place. The main
advantage of this method is simplicity and low
cost of implementation because the model in the
system need not be simulated.

If design specifications require that the
model follower control system be able to follow
a specific phase trajectory of the model start-
ing at a given initial state while the plant is
subject to unknown disturbances or parameter
changes, then real model following 1s the appro-
priate choice. Here the continuous measurement
of error between model states and plant output
offers the additional freedom of using this
error, appropriately weighted, as a means of
alining the model and the plant. However,
because the conditions for perfect following
are identical for both real and implicit model
following, this additional freedom does not
contribute to improved matching of the dynamics
of model and plant in comparison with implicit
model following.

Although optimal control theory offers the
most general method available for the design of
model following systems, it is inefficient,
because of the computational effort required,
for answering such preliminary design questions
as whether or not it is possible to match model
and plant and whether bounded or unbounded con-
trols are required. The theory presented here
answers such questions directly by means of an
algebraic test and, in addition, furnishes, for
the case of implicit model following, a simply
computed control law that achieves perfect
matching if the test shows this to be possible.
By means of an example it is demonstrated that
even if perfect matching is not possible the
performance of a system using the simple con-
trol law may compare favorably with the perfor-
mance of systems designed via optimal control
as long as the dynamics of plant and model are
not too dissimilar.



Appendix

Approximate Synthesis of Feedback Law
Containing Delta PFunctions

In the derivation of conditions for per-
fect following it was necessary to include
delta functions as permissible controls in
order to achieve perfect following. Whenever
the model is of lower order than the plant, it
may be expeditious to sacrifice a part of the
plant dynamics for better matching, and in that
case delta function controls are necessary.
Tmportant questions arise now as to the proce-
dure for constructing a control law containing
delta functions and how to approximate one to
wrbitrary accuracy. Although the concept
behind the construction of such a control law
is well known, its adaptation to this problem
requires some explanation.

To begin with, it is assumed that perfect
matching in the implicit model following sense
can be achieved with controls containing finite,
delta function and derivative of delta function
components. These three components of u are
given in the main text and are repeated here
for convenience:

uy = Piu ug = Pgﬁ 3 Us1 = Palﬁ
~ (A1)
where u 1is defined as follows
%= N (LH - HP)x
= (HB + HFBPy + HE‘2BP61)(LH - HF)x  (A2)

The next step is to divide time into equal
increments At, which are chosen much shorter
than the shortest time constant of the model
and the plant. The control applied to the
plant remains constant throughout each time
inerement and is updated only at the beginning
of a new increment. Assuming the control pro-
cess starts at t = O, the first control
applied to the plant is chosen as follows:

2 ot
u(o) = [Pl + Alt Py + e PS;JM (LH - HF)x(o0)
(A3)

We note that the gain constants multiplying
those components of control that require delta
function and derivative of delta function are
1/At and 2/(At)2, respectively. Also, x(o) is
arbitrary and therefore may be such that

y(o) # Ly(o).

This sets the stage for the crucial step
of this approach, namely the computation of the
error between ¥y and Ly at the end of the
first time increment. Using the standard

expression for the time response of a linear
system [5], we compute y(At):

At
y(at) = H eEAtx(o) +Jp eF(Am—T)Bu(T)dT
o

(AL)
where the transition matrix e is given in
terms of the infinite series as follows:

2
eFLt =1+ Ft+ F;E + .

(45)

Upon substitution of equation (A5) into (Ak)
and since u(t) is constant within the integra-
tion interval, y(At) becomes

2
y(At) = H {%(o) + AtFx(o) + é%; Fx(o) + .
2 2.3
+ [IAt+FAét +F§f + .. .:IBu(o)}

(a6)

The purpose of calculating y(At) is to evalu-
ate the error between F(At) and Ly(At) and to
show that it can be made arbitrarily small.
The error, denoted by n(At), is evaluated
using equations (1), (2), (A3), and (A6):

n(at)
203 2
=H{F+AtF2+At2}f . +[FAt+F2—g‘f’—-
SAL3 BP
S [ e
OBPs 17 «
+ ——(At?;j Jr(LH HF) + B[Pl + = P8
2
-{LH+A’GLHF+At LHF + .
2 3
+ LHErAt + th‘ + Fg??:“:BPl
BP: 2BP, 1l A
—i + ZZG_?E:] i (rm - HF)} x(0) (A8)

Since HBPy = O, HBPg1 = O, and HFBP.; = O,
equation (A8) simplifies to the folldwing form:
n(at) = (MU - I)(LH - 2F) + o(at)  (a9)
where o(At) are terms that go to zero at least
as fast as At. But the first term is identi-
cally zero by the assumption that the perfect
matching condition, equation (16), is satisfied.



Thus, if At is chosen sufficiently small (or

the gain constants arbitrarily large), the — MODEL
error at the end of At seconds can be made as e
small as desired for any initial conditionm. COE’\JQ-[JRA?}[OI’\]A;JG OF
. b'JC1'*‘ur’.c?Llermor:cii }:‘he eﬁo?ugan b:.nair}if:'aiﬁed «weseee. REAL MODEL FOLLOWING
arbitrarily sma or a ure time 1 e
control, equation (A3), is updated at the (OPTIMAL CONTROL DESIGN)
beginning of each new time increment by replac- —-— IMPLICIT MODEL FOLLOWING
- . . .
ing x(nAt) with x[(n + 1)At], n being the (OPTIMAL CONTROL DESIGN)
number of time increments.
Through appropriate limiting arguments, 1.0
the discussion given here for a discrete time
control law can be suitably generalized to qb
continuous time control. 5
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Figure 1l.- Transient responses pertaining to

example 1: 1initial bank angle
disturbances.



Figure 2.- Transient responses pertaining to

example 1: initial roll rate disturbance.
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Figure 3.- The effect of initial bank
misalinement between model and plant
in real model following.

INITIAL CONDITION
0

o
X10l * 0

] 1
T 1 -
‘ "
- 7
/
(b)
L ! | | 1 |
o I 2 3 4 5
TIME, sec

Figure 4.- The effect of K on the transient
response of example 2.



